524 research outputs found

    Geomorphic evolution of a storm-dominated carbonate ramp (c. 549 Ma), Nama Group, Namibia

    Get PDF
    The well-exposed Hoogland Member (c. 549 Ma) of the northern Nama Group (Kuibis Subgroup), Namibia, represents a storm-dominated carbonate ramp developed in a foreland basin of terminal Proterozoic age. The ramp displays facies gradients involving updip grainstones which pass downdip into broad, spatially extensive tracts of microbial laminites and finely laminated mudstones deposited above and below storm wave base. Trough cross-bedded, coarse grainstones are shown to transit downdip into finer-grained calcarenites, irregular microbial laminites and mottled laminites. Siliciclastic siltstones and shales were deposited further downdip. Platform growth was terminated through smothering by orogen-derived siliciclastic deposits. Ramp morphology was controlled by several different processes which acted across many orders of magnitude (millimetres to kilometres), including in situ growth of mats and reefs, scouring by wave-produced currents, and transport and infilling of coarse-grained carbonates and fine-grained carbonates and clastics. At the smallest scale, ‘roughening’ of the sea-floor through heterogeneous trapping and binding by microbial mats was balanced by smoothing of the sea-floor through accumulation of loose sediment to fill the topographic lows within the upward-propagating mat. At the next scale up, parasequence development involved roughening of the sea-floor through shoal growth and grainstone progradation, balanced by sea-floor smoothing through shale infilling of resulting downdip accommodation, as well as the metre-scale topographic depressions within the mosaic of shoal-water facies. At even larger (sequence/platform) scales, roughening of the sea-floor occurred through aggradation and progradation of thick carbonates, balanced by infilling of the foreland basin with orogen-derived siliciclastic sediments. At all scales a net balance was achieved between sea-floor roughening and sea-floor smoothing to maintain a more or less constant ramp profile

    Covert Ephemeral Communication in Named Data Networking

    Full text link
    In the last decade, there has been a growing realization that the current Internet Protocol is reaching the limits of its senescence. This has prompted several research efforts that aim to design potential next-generation Internet architectures. Named Data Networking (NDN), an instantiation of the content-centric approach to networking, is one such effort. In contrast with IP, NDN routers maintain a significant amount of user-driven state. In this paper we investigate how to use this state for covert ephemeral communication (CEC). CEC allows two or more parties to covertly exchange ephemeral messages, i.e., messages that become unavailable after a certain amount of time. Our techniques rely only on network-layer, rather than application-layer, services. This makes our protocols robust, and communication difficult to uncover. We show that users can build high-bandwidth CECs exploiting features unique to NDN: in-network caches, routers' forwarding state and name matching rules. We assess feasibility and performance of proposed cover channels using a local setup and the official NDN testbed

    Geomorphic evolution of a storm-dominated carbonate ramp ( c.

    Full text link

    Departures from isotropy: the kinematics of a larval snail in response to food

    Get PDF
    Author Posting. © Company of Biologists, 2020. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 224(2), (2020): jeb.239178, https://doi.org/10.1242/jeb.239178.The swimming behavior of invertebrate larvae can affect their dispersal, survival and settlement in the ocean. Modeling this behavior accurately poses unique challenges as behavior is controlled by both physiology and environmental cues. Some larvae use cilia to both swim and create feeding currents, resulting in potential trade-offs between the two functions. Food availability is naturally patchy and often occurs in shallow horizontal layers in the ocean. Also, larval swimming motions generally differ in the horizontal and vertical directions. In order to investigate behavioral response to food by ciliated larvae, we measured their behavioral anisotropy by quantifying deviations from a model based on isotropic diffusion. We hypothesized that larvae would increase horizontal swimming and decrease vertical swimming after encountering food, which could lead to aggregation at food layers. We considered Crepidula fornicata larvae, which are specifically of interest as they exhibit unsteady and variable swimming behaviors that are difficult to categorize. We tracked the larvae in still water with and without food, with a portion of the larvae starved beforehand. On average, larvae in the presence of food were observed higher in the water column, with higher swimming speeds and higher horizontal swimming velocities when compared with larvae without food. Starved larvae also exhibited higher vertical velocities in food, suggesting no aggregation behavior. Although most treatments showed strong anisotropy in larval behavior, we found that starved larvae without food exhibited approximately isotropic kinematics, indicating that behavioral anisotropy can vary with environmental history and conditions to enhance foraging success or mitigate food-poor environments.M.H.D. and K.S.M.-K. were supported by postdoctoral scholarships from Woods Hole Oceanographic Institution, and B.T. was supported by a WHOI Summer Student Fellowship. This work was also supported by National Science Foundation grant OCE-0850419

    Comparative life cycle assessment study on environmental impact of oil production from micro-algae and terrestrial oilseed crops

    Get PDF
    In this study the LCA methodology is applied in order to satisfy two goals: i) to evaluate the hot spots in site-specific production chain of biodiesel from terrestrial and micro-algae feedstock; ii) to compare quantitatively, utilizing primary data, the impacts of the first generation in respect to the third generation bio-fuels. Results show that micro-algae are neither competitive yet with traditional oil crops nor with fossil fuel. The use of renewable technologies as photovoltaics and biogas self production might increase the competitiveness of micro-algae oil. Further investigations are however necessary to optimize their production chain and to increase the added value of co-products

    Opto‐Electronic Characterization of Photocatalysts Based on p,n‐Junction Ternary and Quaternary Mixed Oxides Semiconductors (Cu2O‐In2O3 and Cu2O‐In2O3‐TiO2)

    Get PDF
    Semiconductor materials are the basis of electronic devices employed in the communication and media industry. In the present work, we report the synthesis and characterization of mixed metal oxides (MOs) as p,n‐junction photocatalysts, and demonstrate the correlation between the preparation technique and the properties of the materials. Solid‐state UV-visible diffuse reflectance spectroscopy (UV‐VIS DRS) allowed for the determination of the light absorption properties and the optical energy gap. X‐ray photoelectron spectroscopy (XPS) allowed for the determination of the surface speciation and composition and for the determination of the valence band edge. The opto‐electronic behavior was evaluated measuring the photocurrent generated after absorption of chopped visible light in a 3‐electrode cell. Scanning electron microscopy (SEM) measurements allowed for auxiliary characterization of size and morphology, showing the formation of composites for the ternary Cu2O‐In2O3 p,n‐mixed oxide, and even more for the quaternary Cu2O‐In2O3‐TiO2 MO. Light absorption spectra and photocurrent‐time curves mainly depend upon the composition of MOs, while the optical energy gap and defective absorption tail are closely related to the preparation methodology, time and thermal treatment. Qualitative electronic band structures of semiconductors are also presented

    Riesz potentials and nonlinear parabolic equations

    Full text link
    The spatial gradient of solutions to nonlinear degenerate parabolic equations can be pointwise estimated by the caloric Riesz potential of the right hand side datum, exactly as in the case of the heat equation. Heat kernels type estimates persist in the nonlinear cas

    On a Cahn--Hilliard--Darcy system for tumour growth with solution dependent source terms

    Full text link
    We study the existence of weak solutions to a mixture model for tumour growth that consists of a Cahn--Hilliard--Darcy system coupled with an elliptic reaction-diffusion equation. The Darcy law gives rise to an elliptic equation for the pressure that is coupled to the convective Cahn--Hilliard equation through convective and source terms. Both Dirichlet and Robin boundary conditions are considered for the pressure variable, which allows for the source terms to be dependent on the solution variables.Comment: 18 pages, changed proof from fixed point argument to Galerkin approximatio

    The Determination of Titan Gravity Field from Doppler Tracking of the Cassini Spacecraft

    Get PDF
    In its tour of the Saturnian system, the spacecraft Cassini is carrying out measurements of the gravity field of Titan, whose knowledge is crucial for constraining the internal structure of the satellite. In the five flybys devoted to gravity science, the spacecraft is tracked in X (8.4 GHz) and Ka band (32.5 GHz) from the antennas of NASA's Deep Space Network. The use of a dual frequency downlink is used to mitigate the effects of interplanetary plasma, the largest noise source affecting Doppler measurements. Variations in the wet path delay are effectively compensated by means of advanced water vapor radiometers placed close to the ground antennas. The first three flybys occurred on February 27, 2006, December 28, 2006, and June 29, 2007. Two additional flybys are planned in July 2008 and May 2010. This paper presents the estimation of the mass and quadrupole field of Titan from the first two flybys, carried out by the Cassini Radio Science Team using a short arc orbit determination. The data from the two flybys are first independently fit using a dynamical model of the spacecraft and the bodies of the Saturnian system, and then combined in a multi-arc solution. Under the assumption that the higher degree harmonics are negligible, the estimated values of the gravity parameters from the combined, multi-arc solution are GM = 8978.1337 +/- 0.0025 km(exp 3) / s(exp 2), J (sub 2) = (2.7221 +/- 0.0185) 10 (exp -5) and C (sub 22) = (1.1159 +/- 0.0040) 10 (exp -5) The excellent agreement (within 1.7 sigma) of the results from the two flybys further increases the confidence in the solution and provides an a posteriori validation of the dynamical model

    Coupling effects in QD dimers at sub-nanometer interparticle distance

    Get PDF
    Currently, intensive research efforts focus on the fabrication of meso-structures of assembled colloidal quantum dots (QDs) with original optical and electronic properties. Such collective features originate from the QDs coupling, depending on the number of connected units and their distance. However, the development of general methodologies to assemble colloidal QD with precise stoichiometry and particle-particle spacing remains a key challenge. Here, we demonstrate that dimers of CdSe QDs, stable in solution, can be obtained by engineering QD surface chemistry, reducing the surface steric hindrance and favoring the link between two QDs. The connection is made by using alkyl dithiols as bifunctional linkers and different chain lengths are used to tune the interparticle distance from few nm down to 0.5 nm. The spectroscopic investigation highlights that coupling phenomena between the QDs in dimers are strongly dependent on the interparticle distance and QD size, ultimately affecting the exciton dissociation efficiency. [Figure not available: see fulltext.]
    • 

    corecore